Sound Gradual Typing Performance: Evaluation of Safe
TypeScript

Temur Saidkhodjaev
University of Maryland

ABSTRACT

Gradual typing offers a compromise between static typing
and dynamic typing that is hard to pass up. What’s not
to love about a language that combines the flexibility of
Python with the type-checking of Java? Possibly the per-
formance overhead. In this paper, we sought to evaluate the
performance of a sound gradually typed implementation of
TypeScript known as Safe TypeScript. In our results, we
found that the future of gradual typing may not be as dis-
mal as initially forecast by previous works. In fact, we found
that adding more types to a program significantly reduces
its runtime compared to a completely untyped benchmark.

Keywords
Gradual Typing; Performance Evaluation; TypeScript

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from jackcole @umd.edu.

Copyright is held by the owner/author(s).

William Cao
University of Maryland
temurson@umd.edul wcaol2@umd.edu

John Cole
University of Maryland
Jjackcole@umd.edu

1. INTRODUCTION

Programmers indoctrinated into the dynamically typed
or statically typed camps argue relentlessly about which ap-
proach is better. Those who prefer dynamic typing embrace
flexibility and quick prototyping, while those who like their
programs statically typed argue for better error detection,
faster runtimes and better software design. Amidst this bat-
tle a compromise called gradual typing has been proposed in
2006 [6]. When developing type systems, researchers always
try to maintain the soundness of the system, the famous
“well-typed programs don’t go wrong”, and gradual typing
is no different. However, due to the nature of gradual typ-
ing, the compiler cannot possibly know all the types before
runtime, so the solution is to inject runtime type checks to
maintain the type safety guarantees. Unfortunately, it seems
that this solution can significantly degrade performance of
gradually typed programs, so Takikawa et. al., after discov-
ering up to 100x slowdowns in performance of gradual typ-
ing implementation for Racket called Typed Racket, have
declared sound gradual typing dead [3]. Numerous papers
have been published since then: some describing the ways
to optimize gradual typing, some evaluating performance in
other languages, and it seems that gradual typing is still
breathing.

Gradual typing has been implemented in several languages
since the day it has been introduced, including the crowd fa-
vorite TypeScript. However, gradual typing in TypeScript
is by design not sound, meaning that it only checks types
at compile time, and provides no guarantees about the run-
time type safety. That is why testing TypeScript’s perfor-
mance in the context of evaluating sound gradual typing is
meaningless. Nevertheless, there is not one, but two imple-
mentations of sound gradual typing for TypeScript, namely
StrongScript [5] and Safe TypeScript [2], and the latter even
attempts to utilize the type information to increase perfor-
mance. The authors of these implementations have mea-
sured their performance, and found it more than satisfac-
tory, but they have not done the same thorough evaluation
as Siek and Taha did for Typed Racket.

This paper carries out the performance evaluation of Safe
TypeScript using the methodology by Takikawa et. al. [3|
Only the "safe” configuration of the compiler is used to speed
up the evaluation process. The benchmark program is Ray-
Tracing Engine from Octane.js [4] modified by Rastogi et.
al. [2] The resulting data indicates that even though using
Safe TypeScript compiler introduces a 10x slowdown with
respect to the original TypeScript compiler, adding type an-
notations to the fully untyped code does not result in patho-


mailto:temurson@umd.edu
mailto:wcao12@umd.edu
mailto:jackcole@umd.edu

logical slowdowns as in Typed Racket performance evalua-
tion. [3] On the other hand, the more type annotations the
programmer adds, the more performance is restored with
respect to the original TypeScript compiler. Therefore, we
claim that sound gradual typing for TypeScript is definitely
alive, yet might need some exercise to get into shape.

The next section of this paper will explore related work on
this topic. Then, we discuss the testing framework for this
evaluation, the way benchmark programs were rewritten and
combined into a set of partially typed programs, our testing
setup and tools used to carry out the evaluation. Finally,
we present the data and draw a conclusion regarding the
vitality of sound gradual typing for TypeScript, and share
the insights we gained in the process.

2. BACKGROUND AND RELATED WORK

The goal that we had in mind when conducting our perfor-
mance evaluations was to compare our results to evaluations
of other implementations of gradual typing using the same
methods. As a result, the framework that we built our eval-
uation on bears a striking resemblance to the lattice-style
framework described in “Is Sound Gradual Typing Dead?”.

“Is Sound Gradual Typing Dead?” describes the authors’
take on evaluating the performance of Typed Racket, a grad-
ually typed dialect of the Racket programming language.
In their evaluation, the performance of Typed Racket was
assessed by the runtime of benchmarks using six different
modules. Each module had a typed version and an un-
typed version. The benchmarks were run using every pos-
sible permutation of typed and untyped modules, meaning
there were 2° = 64 configurations tested. Because the mod-
ules were the units of code being changed, the evaluation
was of module-level granularity. What the authors discov-
ered was that certain combinations of untyped and typed
modules resulted in catastrophic runtime overhead, up to
a 105.3x increase over the fully untyped benchmark. As
a result, the authors declared “If applying our method to
other gradual type implementations yields similar results,
then sound gradual typing is dead.” With this statement in
mind, we set out to determine if applying their methods to
a wholly different implementation of gradual typing would
indeed yield similar results.

When we were preparing our benchmarks for evaluation,
we based our evaluation method off of Takikawa’s method
but made some changes. The most obvious difference is
that we were evaluating Safe Typescript instead of Typed
Racket, and so we used benchmarks written in Typescript
(located in the Github Repository for Safe Typescript). We
also changed the level of granularity used for our bench-
marks. Rather than using typed and untyped versions of
modules, we added types to some classes of the benchmark,
ranging from all classes to none of them. Thus our level
of granularity was the classes of the benchmark. Instead
of six groups, we had four, resulting in 2* = 16 different
configurations for us to test.

To the best of our knowledge, there have not been any at-
tempts to rigorously evaluate performance of StrongScript
[5] and Safe TypeScript |2] gradual typing implementations
for TypeScript. This might be due to the fact that Type-
Script itself is not sound, and both Safe TypeScript and
StrongScript are both rather experimental research efforts,
and not widely adopted in the TypeScript community.

For both Safe TypeScript and StrongScript only the per-
formance of fully typed and fully untyped programs has been
measured, but intermediate states have not been considered.
It is argued that this is unrealistic, since normally program-
mers tend to refactor their TypeScript code by adding types
step-by-step, and it would be impossible to do in one sitting
for large programs. Therefore, gradual typing implementers
have to make sure that the partially typed program stays as
performant as the untyped one.

3. TESTING FRAMEWORK

In this section, we describe our evaluation methodology.
Namely, how methodology from “Is Sound Gradual Typing
Dead” was adapted for our evaluation, how the code of the
benchmark program was divided into several pieces to form
the performance lattice, then how the code was modified and
the data was obtained.

Carrying out the performance evaluation of Safe Type-
Script and StrongScript involves several challenges. First,
the general framework of testing needs to be decided upon.
This has been successfully done by Siek and Taha in their
evaluation of Typed Racket, but their approach relies upon
the fact that Typed Racket only allows type granularity on
the level of modules. In other words, either the entire mod-
ule is typed, or it is untyped. This is not the case for Type-
Script, and since we cannot test all possible combinations of
being typed/untyped for every single place types appear in,
we have decided to use functions and classes as a unit of pro-
gram refactoring. Files were not chosen for this, because the
benchmark program we use is contained in a single file. The
code was divided in logically connected and roughly equally
sized pieces (around 200 lines of code each).

We evaluated Safe TypeScript on the benchmark of a Ray-
Tracing Engine. The engine has both typed and untyped
benchmark. We combine the typed and untyped classes with
small amounts of modification to make the code compile.
For example, we added return types to functions to smooth
out compatibility between partially typed and untyped code.
We divide the code into 4 pieces. There was a total of 2
choices for each class as typed or untyped. There were thus
16 different classes that were evaluated.

To select the number of trials we used Benchmark.js li-
brary|l]. The library automatically selects the number of
trials to run to avoid noise and have enough trials to get a
statically significant results. If we were to run it manually
we would have potentially unhelpful 0 ms result that are
unhelpful for our data collection. In addition once the num-
ber of trials that we ran finished we would have to manually
determine to have more trails to get a statically significant
result. Using this adaptive library that adjusts, the margin
of error of each calculated trial was less than .001.

4. RESULTS

We organized the performance data from running our bench-
marks into a lattice shape similar to Takikawa et. al. There
is a dramatic difference between the results from our perfor-
mance evaluation of Safe TypeScript and Takikawa et. al’s
evaluation of Typed Racket. As we can see from the fig-
ure below, there is a consistent decrease in runtime as more
and more types are added to the benchmark, eventually get-
ting as low as ten percent of the fully untyped runtime. In
Takikawa et. al., mixing typed and untyped modules re-



sulted in disastrous runtime increases of up to 105.3x the
original fully untyped benchmark [3]. This dramatic differ-
ence could possibly be caused by Typed Racket’s compiler.
If Typed Racket’s compiler had any redundant type contract
validation, that would certainly contribute to the abysmal
runtime observed by Takikawa et. al.

1
10

o141 1011 1101 1110
62 23 23 53

1010

0011 0101 0110 1001 &
65 76 32

1100
1.03 59

0001 0010 0100 1000
93 95 94 67

0000
1

A one represents a typed set of classes, and a zero represents
an untyped set. The more typed code that is added to the
benchmark, the faster the code runs, up to a ninety percent
decrease in runtime.

As we can see, the performance consistently improves with
the exception of one aberration where the performance suf-
fers a slight overhead of a 0.03 percent increase in runtime.
Overall, however, our results were very satisfactory and we
can safely say that sound gradual typing is not dead, at least
with regards to the implementation of sound gradual typing
for Safe TypeScript.

Our insights are that although we see an improvement in
performance in the vacuum of Safe TypeScript, it should be
noted that base untyped Safe Typescript results in a 10x
performance overhead compared to vanilla TypeScript. As
we add more and more types, however, the runtime is re-
claimed. Generally speaking, typed code is faster than un-
typed code. Therefore, fully typing Safe TypeScript results
in a program with the same runtime as a regular TypeScript
program.

S. CONCLUSION

We can see that for almost all the data, there was a
speedup for gradually typed and fully typed variations of the
benchmark in all but one case. The speedup in TypeScript
was a contrast to what was seen in Takikawa et. al.’s paper.
[3]. It is interesting to note that there is a 10x speedup
when changing from Safe TypeScript to normal TypeScript,
so this indicates that adding types to the program causes
the program to gradually regain performance of the code
without the runtime checks.

There can be a few explanations for this. First, it has
been argued that Typed Racket’s compiler is not perform-
ing enough optimizations to the typechecking process, thus
incurring such a large runtime overhead. It might be just
the problem of Typed Racket compiler in this case. Second,
we hypothesize that the JavaScript runtime (V8 engine) is
performing optimizations so well that the cost of runtime
checks becomes negligible.

For future improvements on this project, we can look to
evaluating more implementations of sound gradual typing
in TypeScript, such as StrongScript, which we mentioned in
our introduction. Furthermore, we could improve upon our
existing tests by using more Octane benchmarks, as only
using the Ray-Tracing Engine benchmark is somewhat lim-

iting. If we so wished, we could also run our benchmarks
on different versions of the Safe TypeScript compiler, such
as an optimized compiler. Something we wished we could
have done but did not do was figure out which typechecking
contracts contributed the most to the runtime overhead in
the different stages of the lattice. This analysis was done in
Takikawa et. al., but we lack the necessary tools to perform
it.

Overall, we conclude that sound gradual typing for Type-
Script is definitely not dead, yet might need some exercise to
get into shape. In particular, modifying the JavaScript run-
time to be type-aware and thus safer and faster, or adding
some contract optimization strategies are some of the ways
to do this.

Acknowledgments

We would like to thank our dedicated teachers Dave Levin
and Leilani Battle, who continued to supply us with edu-
cational resources and valuable guidance in the midst of a
global pandemic.

6. REFERENCES

[1] Mathias Bynens and John-David Dalton. Benchmark
JS. https://calendar.perfplanet.com/2010/
bulletproof-javascript-benchmarks/, Dec. 2010.

[2] Aseem Rastogi and Nikhil Swamy and Cedric Fournet
and Gavin Bierman and Panagiotis Vekris. Safe
Efficient Gradual Typing for TypeScript.
http://www.cs.umd.edu/ aseem/safets-tr.pdf, Aug.
2014.

[3] Asumu Takikawa and Daniel Feltey and Ben Greenman

and Max S. New and Jan Vitek and Matthias Felleisen.

Is Sound Gradual Typing Dead?

http://www.ccis.northeastern.edu/home/types/

publications/gradual-dead/pre-treatment.pdf,

Jan. 2016.

Google Developers. The JavaScript Benchmark Suite

for the modern web.

https://developers.google.com/octane, Apr. 2017.

Gregor Richards and Francesco Zappa Nardelli and Jan

Vitek3. Concrete Types for TypeScript.

http://janvitek.org/pubs/ecooplba.pdf, Apr. 2015.

Jeremy G. Siek and Walid Taha. Gradual Typing for

Functional Languages.

http://schemeworkshop.org/2006/13-siek.pdf, Jan.

2006.

[4

5

6


https://calendar.perfplanet.com/2010/bulletproof-javascript-benchmarks/
https://calendar.perfplanet.com/2010/bulletproof-javascript-benchmarks/
http://www.cs.umd.edu/~aseem/safets-tr.pdf
http://www.ccis.northeastern.edu/home/types/publications/gradual-dead/pre-treatment.pdf
http://www.ccis.northeastern.edu/home/types/publications/gradual-dead/pre-treatment.pdf
https://developers.google.com/octane
http://janvitek.org/pubs/ecoop15a.pdf
http://schemeworkshop.org/2006/13-siek.pdf

	Introduction
	Background and Related Work
	Testing Framework
	Results
	Conclusion
	References

